API 5CT J55 K55 N80 L80 P110 Seamless Steel Tubing
overview of API 5ct J55 k55 n80 l80 p110 seamless steel tubing api 5ct J55 K55 N80 L80 P110 Seamless Steel Tubing is a type of tubing used in the oil and gas industry. It is designed to withstand high pressure and extreme temperatures, making it ideal for use in drilling and production operations. In…
overview of API 5ct J55 k55 n80 l80 p110 seamless steel tubing
API 5ct J55 K55 N80 L80 P110 Seamless Steel Tubing is a type of tubing used in the oil and gas industry. It is designed to withstand high pressure and extreme temperatures, making it ideal for use in drilling and production operations. In this article, we will provide an overview of this type of tubing, including its specifications, applications, and benefits. Steel Tube API 5CT J55 K55 N80 L80 P110 Seamless Steel Tubing is manufactured according to the american petroleum institute (API) 5CT standard. This standard sets the requirements for seamless Casing and tubing used in the oil and gas industry. The j55, K55, N80, L80, and P110 designations refer to different grades of steel used in the manufacturing process. Each grade has its own unique properties and is suitable for specific applications. J55 is the lowest grade among the five mentioned. It has a minimum yield strength of 55,000 psi and is commonly used in shallow wells and low-pressure applications. K55 has the same yield strength as J55 but has a higher tensile strength, making it suitable for deeper wells and higher-pressure environments. N80 is a higher grade with a minimum yield strength of 80,000 psi. It is commonly used in medium-depth wells and has good resistance to corrosion.
Chemical composition, mass Fraction (%) | ||||||||||||||
Grade | C | Mn | Mo | Cr | Ni | Cu | P | S | Si | |||||
Type | min | max | min | max | min | max | min | max | max | max | max | max | max | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
H40 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
J55 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
K55 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
N80 | 1 | — | — | — | — | — | — | — | — | — | — | 0.03 | 0.03 | — |
N80 | Q | — | — | — | — | — | — | — | — | — | — | 0.03 | 0.03 | — |
R95 | — | — | 0.45 c | — | 1.9 | — | — | — | — | — | — | 0.03 | 0.03 | 0.45 |
L80 | 1 | — | 0.43 a | — | 1.9 | — | — | — | — | 0.25 | 0.35 | 0.03 | 0.03 | 0.45 |
L80 | 9Cr | — | 0.15 | 0.3 | 0.6 | 0.9 | 1.1 | 8 | 10 | 0.5 | 0.25 | 0.02 | 0.03 | 1 |
L80 | 13Cr | 0.15 | 0.22 | 0.25 | 1 | — | — | 12 | 14 | 0.5 | 0.25 | 0.02 | 0.03 | 1 |
c90 | 1 | — | 0.35 | — | 1.2 | 0.25 b | 0.85 | — | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
T95 | 1 | — | 0.35 | — | 1.2 | 0.25 b | 0.85 | 0.4 | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
C110 | — | — | 0.35 | — | 1.2 | 0.25 | 1 | 0.4 | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
P110 | e | — | — | — | — | — | — | — | — | — | — | 0.030 e | 0.030 e | — |
Q125 | 1 | — | 0.35 | 1.35 | — | 0.85 | — | 1.5 | 0.99 | — | 0.02 | 0.01 | — | |
NOTE elements shown shall be reported in product analysis. | ||||||||||||||
a The carbon content for L80 may be increased up to 0.50 % maximum if the product is oil-quenched or polymer-quenched. | ||||||||||||||
b The molybdenum content for Grade C90 Type 1 has no minimum tolerance if the Wall thickness is less than 17.78 mm. | ||||||||||||||
c The carbon content for R95 may be increased up to 0.55 % maximum if the product is oil-quenched. | ||||||||||||||
d The molybdenum content for T95 Type 1 may be decreased to 0.15 % minimum if the wall thickness is less than 17.78 mm. | ||||||||||||||
e For EW Grade P110, the phosphorus content shall be 0.020 % maximum and the sulfur content 0.010 % maximum. |