API 5CT J55 Tubing
introduction to API 5ct J55 tubing api 5ct j55 tubing is a type of steel tubing that is commonly used in the oil and gas industry. It is designed to withstand high pressure and extreme temperatures, making it ideal for use in drilling and production operations. In this article, we will provide an introduction to…
introduction to API 5ct J55 tubing
API 5ct j55 tubing is a type of steel tubing that is commonly used in the oil and gas industry. It is designed to withstand high pressure and extreme temperatures, making it ideal for use in drilling and production operations. In this article, we will provide an introduction to API 5CT J55 Tubing, discussing its specifications, properties, and applications. API 5CT J55 Tubing is manufactured according to the american petroleum institute (API) 5CT standard, which sets the requirements for Casing and tubing used in oil and gas wells. The J55 designation refers to the minimum yield strength of the tubing, which is 55,000 psi (pounds per square inch). This means that the tubing can withstand a certain amount of pressure before it starts to deform or fail. CT80 coiled TubingThe API 5CT J55 Tubing is made from high-quality carbon steel, which provides excellent strength and durability. It is available in various sizes and lengths, allowing for flexibility in design and installation. The tubing is typically Threaded on both ends, making it easy to connect to other components in the wellbore.
Chemical composition, mass Fraction (%) | ||||||||||||||
grade | C | Mn | Mo | Cr | Ni | Cu | P | S | Si | |||||
Type | min | max | min | max | min | max | min | max | max | max | max | max | max | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
H40 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
J55 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
k55 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
n80 | 1 | — | — | — | — | — | — | — | — | — | — | 0.03 | 0.03 | — |
N80 | Q | — | — | — | — | — | — | — | — | — | — | 0.03 | 0.03 | — |
R95 | — | — | 0.45 c | — | 1.9 | — | — | — | — | — | — | 0.03 | 0.03 | 0.45 |
l80 | 1 | — | 0.43 a | — | 1.9 | — | — | — | — | 0.25 | 0.35 | 0.03 | 0.03 | 0.45 |
L80 | 9Cr | — | 0.15 | 0.3 | 0.6 | 0.9 | 1.1 | 8 | 10 | 0.5 | 0.25 | 0.02 | 0.03 | 1 |
L80 | 13Cr | 0.15 | 0.22 | 0.25 | 1 | — | — | 12 | 14 | 0.5 | 0.25 | 0.02 | 0.03 | 1 |
C90 | 1 | — | 0.35 | — | 1.2 | 0.25 b | 0.85 | — | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
T95 | 1 | — | 0.35 | — | 1.2 | 0.25 b | 0.85 | 0.4 | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
C110 | — | — | 0.35 | — | 1.2 | 0.25 | 1 | 0.4 | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
p110 | e | — | — | — | — | — | — | — | — | — | — | 0.030 e | 0.030 e | — |
Q125 | 1 | — | 0.35 | 1.35 | — | 0.85 | — | 1.5 | 0.99 | — | 0.02 | 0.01 | — | |
NOTE elements shown shall be reported in product analysis. | ||||||||||||||
a The carbon content for L80 may be increased up to 0.50 % maximum if the product is oil-quenched or polymer-quenched. | ||||||||||||||
b The molybdenum content for Grade C90 Type 1 has no minimum tolerance if the Wall thickness is less than 17.78 mm. | ||||||||||||||
c The carbon content for R95 may be increased up to 0.55 % maximum if the product is oil-quenched. | ||||||||||||||
d The molybdenum content for T95 Type 1 may be decreased to 0.15 % minimum if the wall thickness is less than 17.78 mm. | ||||||||||||||
e For EW Grade P110, the phosphorus content shall be 0.020 % maximum and the sulfur content 0.010 % maximum. |