China Product Galvanized Steel Pipe/Coating Zinc/Hot DIP Galvanize Gi Pipe Made in China for Conduit Pipe, Oil Pipeline
The Benefits of galvanized steel Pipe for Conduit Pipe and oil pipeline in china China product Galvanized Steel Pipe/coating Zinc/hot DIP Galvanize Gi Pipe Made in China for Conduit Pipe, Oil Pipeline Galvanized steel pipe has become a popular choice for conduit pipe and oil pipelines in China due to its numerous benefits. The process…
The Benefits of galvanized steel Pipe for Conduit Pipe and oil pipeline in china
China product Galvanized Steel Pipe/coating Zinc/hot DIP Galvanize Gi Pipe Made in China for Conduit Pipe, Oil Pipeline Galvanized steel pipe has become a popular choice for conduit pipe and oil pipelines in China due to its numerous benefits. The process of galvanization involves coating the steel pipe with a layer of zinc, which provides protection against corrosion and extends the lifespan of the pipe. This article will explore the advantages of using galvanized steel pipe for conduit pipe and oil pipelines in China. Oil Tube One of the main benefits of galvanized steel pipe is its resistance to corrosion. The zinc coating acts as a barrier between the steel and the surrounding environment, preventing the formation of rust. This is particularly important for conduit pipe and oil pipelines, as they are often exposed to moisture and other corrosive elements. By using galvanized steel pipe, China can ensure the longevity and durability of its conduit pipe and oil pipelines.Labels a | Calculated mass c | ||||||||||
Nominal Linear Mass T& C b,c | Wall Thick- ness | em, Mass Gain or Loss Due to End Finishing d | |||||||||
Outside diameter | inside Diameter | Drift Diameter | Plain- end | kg | |||||||
Round Thread | Buttress Thread | ||||||||||
wpe | |||||||||||
D | kg/m | t | D | mm | kg/m | Short | Long | RC | SCC | ||
mm | mm | mm | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 3/8 | 48 | 339.72 | 71.43 | 8.38 | 322.96 | 318.99 | 68.48 | 15.04 | — | — 17.91 | — |
13 3/8 | 54.5 | 339.72 | 81.1 | 9.65 | 320.42 | 316.45 | 78.55 | 13.88 | — | 16.44 | — |
13 3/8 | 61 | 339.72 | 90.78 | 10.92 | 317.88 | 313.91 | 88.55 | 12.74 | — | 14.97 | — |
13 3/8 | 68 | 339.72 | 101.19 | 12.19 | 315.34 | 311.37 | 98.46 | 11.61 | — | 14.97 | — |
13 3/8 | 68 | 339.72 | 101.19 | 12.19 | 315.34 | 311.37 | 98.46 | 11.67 f | — | 14.33 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 311.15 e | 105.21 | 10.98 | — | 13.98 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 311.15 e 309.63 309.63 | 105.21 | 10.91 f | — | 14.33 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 105.21 | 10.98 | — | 13.98 | — | |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 105.21 | 10.91 e | — | — | ||
16 | 65 | 406.4 | 96.73 | 9.53 | 387.4 | 382.57 | 96.73 | 18.59 | — | — 20.13 | — |
16 | 75 | 406.4 | 111.61 | 11.13 | 384.1 | 379.37 | 108.49 | 16.66 | — | 18.11 | — |
16 | 84 | 406.4 | 125.01 | 12.57 | 381.3 | 376.48 | 122.09 | 14.92 | — | — | — |
16 | 109 | 406.4 | 162.21 | 16.66 | 373.1 | 368.3 | 160.13 | — | — | — | |
18 5/8 | 87.5 | 473.08 | 130.21 | 11.05 | 450.98 | 446.22 | 125.91 | 33.6 | — | 39.25 | — |
20 | 94 | 508 | 139.89 | 11.13 | 485.7 | 480.97 | 136.38 | 20.5 | 27.11 | 24.78 | — |
20 | 94 | 508 | 139.89 | 11.13 | 485.7 | 480.97 | 136.38 | 20.61 | 27.26 g 24.27 17.84 | 24.78 | — |
20 | 106.5 | 508 | 158.49 | 12.7 | 482.6 | 477.82 | 155.13 | 18.22 | 22 | — | |
20 | 133 | 508 | 197.93 | 16.13 | 475.7 | 470.97 | 195.66 | 13.03 | 16.02 | — | |
NOTE See also Figures D.1, D.2, and D.3. | |||||||||||
a Labels are for information and assistance in ordering. | |||||||||||
b Nominal linear masses, threaded and coupled (Column 4) are shown for information only. | |||||||||||
c The densities of martensitic chromium steels (l80 types 9Cr and 13Cr) are less than those of carbon steels; The masses shown are therefore not accurate for martensitic chromium steels; A mass correction factor of 0.989 shall be used. | |||||||||||
d Mass gain or loss due to end finishing; See 8.5. | |||||||||||
e Drift diameter for most common bit size; This drift diameter shall be specified in the purchase agreement and marked on the pipe; See 8.10 for drift requirements. | |||||||||||
f Based on 758 mPa minimum yield strength or greater. | |||||||||||
g Based on 379 mPa minimum yield strength. |