High Temperature Oil Resistance Viton Fluororubber Heat Shrink Tubing
Benefits of Using High temperature oil resistance Viton Fluororubber heat Shrink tubing High Temperature Oil Resistance Viton Fluororubber Heat Shrink Tubing is a versatile and durable Material that offers a wide range of benefits for various applications. This type of tubing is specifically designed to withstand high temperatures and resist oil, making it an ideal…
Benefits of Using High temperature oil resistance Viton Fluororubber heat Shrink tubing
High Temperature Oil Resistance Viton Fluororubber Heat Shrink Tubing is a versatile and durable Material that offers a wide range of benefits for various applications. This type of tubing is specifically designed to withstand high temperatures and resist oil, making it an ideal choice for industries that require reliable and long-lasting tubing solutions. One of the key benefits of using High Temperature Oil Resistance Viton Fluororubber Heat Shrink Tubing is its ability to withstand extreme temperatures. This tubing can handle temperatures ranging from -40°C to 200°C, making it suitable for use in environments where other materials may fail. Whether you are working in a hot industrial setting or a cold outdoor environment, this tubing will maintain its integrity and performance.Chemical composition, mass Fraction (%) | ||||||||||||||
Grade | C | Mn | Mo | Cr | Ni | Cu | P | S | Si | |||||
Type | min | max | min | max | min | max | min | max | max | max | max | max | max | |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
H40 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
J55 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
k55 | — | — | — | — | — | — | — | — | — | — | — | — | 0.03 | — |
n80 | 1 | — | — | — | — | — | — | — | — | — | — | 0.03 | 0.03 | — |
N80 | Q | — | — | — | — | — | — | — | — | — | — | 0.03 | 0.03 | — |
R95 | — | — | 0.45 c | — | 1.9 | — | — | — | — | — | — | 0.03 | 0.03 | 0.45 |
l80 | 1 | — | 0.43 a | — | 1.9 | — | — | — | — | 0.25 | 0.35 | 0.03 | 0.03 | 0.45 |
L80 | 9Cr | — | 0.15 | 0.3 | 0.6 | 0.9 | 1.1 | 8 | 10 | 0.5 | 0.25 | 0.02 | 0.03 | 1 |
L80 | 13Cr | 0.15 | 0.22 | 0.25 | 1 | — | — | 12 | 14 | 0.5 | 0.25 | 0.02 | 0.03 | 1 |
c90 | 1 | — | 0.35 | — | 1.2 | 0.25 b | 0.85 | — | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
T95 | 1 | — | 0.35 | — | 1.2 | 0.25 b | 0.85 | 0.4 | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
C110 | — | — | 0.35 | — | 1.2 | 0.25 | 1 | 0.4 | 1.5 | 0.99 | — | 0.02 | 0.03 | — |
p110 | e | — | — | — | — | — | — | — | — | — | — | 0.030 e | 0.030 e | — |
Q125 | 1 | — | 0.35 | 1.35 | — | 0.85 | — | 1.5 | 0.99 | — | 0.02 | 0.01 | — | |
NOTE elements shown shall be reported in product analysis. | ||||||||||||||
a The carbon content for L80 may be increased up to 0.50 % maximum if the product is oil-quenched or polymer-quenched. | ||||||||||||||
b The molybdenum content for Grade C90 Type 1 has no minimum tolerance if the Wall thickness is less than 17.78 mm. | ||||||||||||||
c The carbon content for R95 may be increased up to 0.55 % maximum if the product is oil-quenched. | ||||||||||||||
d The molybdenum content for T95 Type 1 may be decreased to 0.15 % minimum if the wall thickness is less than 17.78 mm. | ||||||||||||||
e For EW Grade P110, the phosphorus content shall be 0.020 % maximum and the sulfur content 0.010 % maximum. |
